Deep learning for peptide identification from metaproteomics datasets

从宏蛋白质组学数据集进行肽识别的深度学习

阅读:3
作者:Shichao Feng, Ryan Sterzenbach, Xuan Guo

Significance

The identification of peptides and proteins from MS data involves the computational procedure of searching MS/MS spectra against a predefined protein sequence database and assigning top-scored peptides to spectra. Existing computational tools are still far from being able to extract all the information out of MS/MS data sets acquired from metaproteome samples. Systematical experiment results demonstrate that the DeepFilter identified up to 12% and 9% more peptide-spectrum-matches and proteins, respectively, compared with existing filtering algorithms, including Percolator, Q-ranker, PeptideProphet, and iProphet, on marine and soil microbial metaproteome samples with false discovery rate at 1%. The taxonomic analysis shows that DeepFilter found up to 7%, 10%, and 14% more species from marine, soil, and human gut samples compared with existing filtering algorithms. Therefore, DeepFilter was believed to generalize properly to new, previously unseen peptide-spectrum-matches and can be readily applied in peptide identification from metaproteomics data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。