Harmine suppresses hyper-activated Ras-MAPK pathway by selectively targeting oncogenic mutated Ras/Raf in Caenorhabditis elegans

哈尔明通过选择性靶向致癌突变 Ras/Raf 来抑制秀丽隐杆线虫中过度活跃的 Ras-MAPK 通路

阅读:10
作者:Jiaojiao Ji #, Jiang Yuan #, Xiaoyu Guo #, Ruifang Ji, Qinghua Quan, Mei Ding, Xia Li, Yonggang Liu

Background

Mutationally activated Ras proteins are closely linked to a wide variety of human cancers. Hence, there has been an intensive search for anti-Ras therapies for cancer treatment. The sole Ras gene, which encodes LET-60, in Caenorhabditis elegans regulates vulval development. While the loss of let-60 function leads to failure of vulva formation, the let-60(n1046gf) allele, which contains a missense mutation mimicking a Ras codon 13 mutation found in human cancers,

Conclusion

In sum, we have revealed for the first time the anti-Ras activity of harmine in a C. elegans model system. Our results revealed the potential anti-cancer mechanism of harmine, which may be useful for the treatment of specific human cancers that are associated with oncogenic Ras mutations.

Methods

By taking advantage of the easy-to-score Muv phenotype of let-60(n1046gf), we used a step-by-step screening approach (from crude extract to active fraction to active natural compound) to search for inhibitors of oncogenic Ras. Mutants of other key components in the Ras-mitogen-activated protein kinase (MAPK) pathway were used to identify other candidate targets.

Results

The natural compound harmine, isolated from the plant Peganum harmala, was found to suppress the Muv phenotype of let-60(n1046gf). In addition, harmine targets the hyper-activation of the Ras/MAPK pathway specifically caused by overexpression or mutated forms of LET-60/Ras and its immediate downstream molecule LIN-45/Raf. Finally, harmine can be absorbed into the worm body and probably functions in its native form, rather than requiring metabolic activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。