A dimerization-dependent mechanism regulates enzymatic activation and nuclear entry of PLK1

二聚化依赖机制调节PLK1的酶活化和核进入

阅读:6
作者:Monika Raab, Yves Matthess, Christopher A Raab, Niklas Gutfreund, Volker Dötsch, Sven Becker, Mourad Sanhaji #, Klaus Strebhardt #

Abstract

Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。