Development of skin sebum medium and inhibition of lipase activity in Cutibacterium acnes by oleic acid

皮肤皮脂培养基的开发及油酸对痤疮杆菌脂肪酶活性的抑制

阅读:10
作者:Keisuke Nakase, Misato Momose, Tomoko Yukawa, Hidemasa Nakaminami

Abstract

Cutibacterium acnes is associated with the exacerbated inflammation of acne vulgaris, which occurs through the immune induction and pathogenicity factor production. Sebum, which is not present in the growth medium currently used to study acne, is present in acne pustules in differing concentrations among the pathological stages, such as the initial formation and inflammatory phase. To evaluate the effect of C. acnes on inflammation exacerbation in acne pustules in vitro, we developed an skin sebum medium containing artificial sebum and studied the growth and pathogenicity factor production of C. acnes in the skin sebum medium. The growth and lipase activity of C. acnes ATCC11828 were tested using skin sebum medium containing different sebum concentrations. Only lipase activity decreased in the skin sebum medium culture containing 0.5 % sebum when compared with that without sebum, while both growth and lipase activity decreased in cultures with 1.0 % sebum. Therefore, the growth and lipase activity of C. acnes changed in the presence of sebum. Furthermore, when the growth and lipase activity of C. acnes were tested in skin sebum medium containing sebum components, unsaturated fatty acids, such as oleic acid and triolein, led to a decrease in lipase activity without inducing a change in growth. In the presence of oleic acid, C. acnes lipase activity decreased noncompetitively in a concentration-dependent manner. Our data showed that C. acnes growth and lipase activity changed upon sebum addition to the skin sebum medium, and acne inflammation caused by C. acnes needs to be studied under conditions similar to those in acne pustules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。