Resveratrol and N-acetylcysteine influence redox balance in equine articular chondrocytes under acidic and very low oxygen conditions

白藜芦醇和 N-乙酰半胱氨酸影响酸性和极低氧条件下马关节软骨细胞的氧化还原平衡

阅读:10
作者:John A Collins, Robert J Moots, Peter D Clegg, Peter I Milner

Abstract

Mature articular cartilage is an avascular tissue characterized by a low oxygen environment. In joint disease, acidosis and further reductions in oxygen levels occur, compromising cartilage integrity.This study investigated how acidosis and very low oxygen levels affect components of the cellular redox system in equine articular chondrocytesand whether the antioxidants resveratrol and N-acetylcysteine could modulate this system. We used articular chondrocytes isolated from nondiseased equine joints and cultured them in a 3-D alginate bead system for 48h in <1, 2, 5, and 21% O2 at pH 7.2 or 6.2 in the absence or presence of the proinflammatory cytokine, interleukin-1β (10ng/ml).In addition, chondrocytes were cultured with resveratrol (10µM) or N-acetylcysteine (NAC) (2mM).Cell viability, glycosaminoglycan (GAG) release, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), GSH:GSSG ratio, and SOD1 and SOD2 protein expression were measured. Very low levels of oxygen (<1%), acidosis (pH 6.2), and exposure to IL-1β led to reductions in cell viability, increased GAG release, alterations in ΔΨm and ROS levels, and reduced GSH:GSSG ratio. In addition, SOD1 and SOD2 protein expressions were reduced. Both resveratrol and NAC partially restored ΔΨm and ROS levels and prevented GAG release and cell loss and normalized SOD1 and SOD2 protein expression. In particular NAC was highly effective at restoring the GSH:GSSG ratio.These results show that the antioxidants resveratrol and N-acetylcysteine can counteract the redox imbalance in articular chondrocytes induced by low oxygen and acidic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。