The influence of ezetimibe on classical and alternative activation pathways of monocytes/macrophages isolated from patients with hypercholesterolemia

依折麦布对高胆固醇血症患者分离的单核细胞/巨噬细胞经典和替代活化途径的影响

阅读:6
作者:Dariusz Suchy, Krzysztof Łabuzek, Grzegorz Machnik, Bogusław Okopień

Abstract

Macrophages are crucial for the development of atherosclerotic plaques. Classically activated macrophages contribute to plaque growth and destabilization, while alternatively activated macrophages increase plaque stability. Here, we assessed the influence of ezetimibe on the activation of monocyte-derived macrophages isolated from patients with hypercholesterolemia (total cholesterol 263.4 ± 12.5 mg/dl, low-density lipoprotein cholesterol 179.7 ± 11.3 mg/dl, triglycerides 123.9 ± 11.4 mg/dl). Cells were stimulated with 1 μg/ml lipopolysaccharide (LPS) or 1 μg/ml LPS plus 22 ng/ml ezetimibe. Control cells were left unstimulated. The expression of classical activation markers (interleukin-1β (IL-1β), nitric oxide (NO), and inducible nitric oxide synthase (iNOS)) and alternative activation markers (mannose receptor (MR) and arginase-1 (Arg1)) was determined after 48 h. The employed analytical methods included enzyme-linked immunosorbent assay, Griess reaction, real-time polymerase chain reaction, and Western blotting. LPS increased the secretion of IL-1β and NO and the expression of iNOS mRNA, iNOS protein, and Arg1 protein. It did not affect the expression of MR or Arg1 mRNA. In comparison to LPS stimulation, co-stimulation with ezetimibe decreased the secretion of IL-1β and the expression of iNOS mRNA and protein, while it increased MR mRNA and protein expression. Co-stimulation with ezetimibe did not change the secretion of NO or the expression of Arg1. The results suggest that ezetimibe in inflammatory in vitro conditions contributes to the suppression of classical and promotion of the alternative macrophage activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。