Genetic divergence at species boundaries of the dolphinfish (Coryphaena hippurus) in the Tropical Eastern Pacific

热带东太平洋鲯鳅(Coryphaena hippurus)物种边界的遗传分化

阅读:6
作者:Maried Ochoa-Zavala, Pindaro Diaz-Jaimes, Sofía Ortega-García, Felipe Galván-Magaña

Background

Marine species constitute commercially important resources, and knowledge about mechanisms that shape phylogeographic patterns and genetic structure provides valuable information for conservation. The dolphinfish, Coryphaena hippurus, is one of the most important species caught in the Tropical Eastern Pacific (TEP). However, the lack of consensus about the existence of genetically differentiated populations in the area has hindered the adoption of management strategies to ensure its viability.

Conclusions

The distribution of genetic variation could be related to expansion-contraction cycles following seasonal temperature changes at transitional areas, promoting population subdivisions. However, we cannot rule out the effect of oceanographic dynamics to the observed patterns. Although this marine species remains highly abundant despite commercial exploitation, the low Ne values are of conservation concern and must be considered in fishery management plans.

Methods

We assessed genetic variation and phylogeographic structure using two mitochondrial genes and 14 nuclear DNA microsatellite loci. Population genetic tools were used to characterize the spatial distribution of genetic variation of C. hippurus in the TEP, evaluate the extent of connectivity between dolphinfish populations, infer potential barriers to gene flow, and test for signals of contemporary and historical demographic expansions.

Results

Mitochondrial DNA sequences showed genetic homogeneity across locations in the TEP, as well as a strong signal of population expansion dated to the late Pleistocene. In contrast, nuclear microsatellite markers resolved four genetically distinct groups with a remarked genetic differentiation between the most distant locations, at the northern and southern boundaries of the species' range. High mean genetic diversity was found at all localities (Hs = 0.66-0.81). Notwithstanding, positive F IS and low effective population size (Ne = 77.9-496.4) were also recorded. Conclusions: The distribution of genetic variation could be related to expansion-contraction cycles following seasonal temperature changes at transitional areas, promoting population subdivisions. However, we cannot rule out the effect of oceanographic dynamics to the observed patterns. Although this marine species remains highly abundant despite commercial exploitation, the low Ne values are of conservation concern and must be considered in fishery management plans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。