Deep-Learning-Based Nanomechanical Vibration for Rapid and Label-Free Assay of Epithelial Mesenchymal Transition

基于深度学习的纳米机械振动用于上皮间质转化的快速、无标记检测

阅读:5
作者:Wenjie Wu, Yongpei Peng, Mengjun Xu, Tianhao Yan, Duo Zhang, Ye Chen, Kainan Mei, Qiubo Chen, Xiapeng Wang, Zihan Qiao, Chen Wang, Shangquan Wu, Qingchuan Zhang

Abstract

Cancer is a profound danger to our life and health. The classification and related studies of epithelial and mesenchymal phenotypes of cancer cells are key scientific questions in cancer research. Here, we investigated cancer cell colonies from a mechanical perspective and developed an assay for classifying epithelial/mesenchymal cancer cell colonies using the biomechanical fingerprint in the form of "nanovibration" in combination with deep learning. The classification method requires only 1 s of vibration data and has a classification accuracy of nearly 92.5%. The method has also been validated for the screening of anticancer drugs. Compared with traditional methods, the method has the advantages of being nondestructive, label-free, and highly sensitive. Furthermore, we proposed a perspective that subcellular structure influences the amplitude and spectrum of nanovibrations and demonstrated it using experiments and numerical simulation. These findings allow internal changes in the cell colony to be manifested by nanovibrations. This work provides a perspective and an ancillary method for cancer cell phenotype diagnosis and promotes the study of biomechanical mechanisms of cancer progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。