Electrospun-Reinforced Suturable Biodegradable Artificial Cornea

电纺增强可缝合可生物降解人工角膜

阅读:6
作者:Sina Sharifi, Hannah Sharifi

Abstract

Despite rigorous investigations, the hydrogels currently available to replace damaged tissues, such as the cornea, cannot fulfill mechanical and structural requirements and, more importantly, cannot be sutured into host tissues due to the lack of hierarchical structures to dissipate exerted stress. In this report, solution electrospinning of polycaprolactone (PCL), protein-based hydrogel perfusion, and layer-by-layer stacking are used to generate a hydrogel-microfiber composite with varying PCL fiber diameters and hydrogel concentrations. Integrating PCL microfibers into the hydrogel synergistically improves the mechanical properties and suturability of the construct up to 10-fold and 50-fold, respectively, compared to the hydrogel and microfiber scaffolds alone, approaching those of the corneal tissue. Human corneal cells cultured on composites are viable and can spread, proliferate, and retain phenotypic characteristics. Moreover, corneal stromal cells migrate into the scaffold, degrade it, and regenerate the extracellular matrix. The current hydrogel reinforcing system paves the way for producing suturable and, therefore, transplantable tissue constructs with desired mechanical properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。