Dynamic Regulation of Caveolin-1 Phosphorylation and Caveolae Formation by Mammalian Target of Rapamycin Complex 2 in Bladder Cancer Cells

哺乳动物雷帕霉素靶蛋白复合物 2 对膀胱癌细胞中 Caveolin-1 磷酸化和 Caveolae 形成的动态调控

阅读:5
作者:Andrew M Hau, Sounak Gupta, Mariah Z Leivo, Kazufumi Nakashima, Jesus Macias, Weidong Zhou, Alex Hodge, Julie Wulfkuhle, Brian Conkright, Krithika Bhuvaneshwar, Shruti Rao, Subha Madhavan, Emanuel F Petricoin 3rd, Donna E Hansel

Abstract

The mammalian target of rapamycin (mTOR) and associated phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway is commonly up-regulated in cancer, including bladder cancer. mTOR complex 2 (mTORC2) is a major regulator of bladder cancer cell migration and invasion, but the mechanisms by which mTORC2 regulates these processes are unclear. A discovery mass spectrometry and reverse-phase protein array-based proteomics dual approach was used to identify novel mTORC2 phosphoprotein targets in actively invading cancer cells. mTORC2 targets included focal adhesion kinase, proto-oncogene tyrosine-protein kinase Src, and caveolin-1 (Cav-1), among others. Functional testing shows that mTORC2 regulates Cav-1 localization and dynamic phosphorylation of Cav-1 on Y14. Regulation of Cav-1 activity by mTORC2 also alters the abundance of caveolae, which are specialized lipid raft invaginations of the plasma membrane associated with cell signaling and membrane compartmentalization. Our results demonstrate a unique role for mTORC2-mediated regulation of caveolae formation in actively migrating cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。