SESN2 protects against doxorubicin-induced cardiomyopathy via rescuing mitophagy and improving mitochondrial function

SESN2 通过拯救线粒体自噬和改善线粒体功能来预防阿霉素诱发的心肌病

阅读:7
作者:Panxia Wang, Luping Wang, Jing Lu, Yuehuai Hu, Qianqian Wang, Zhenzhen Li, Sidong Cai, Liying Liang, Kaiteng Guo, Jiyan Xie, Junjian Wang, Rui Lan, Juan Shen, Peiqing Liu

Abstract

The clinical application of doxorubicin (Dox) in cancer therapy is limited by its serious cardiotoxicity. Our previous studies and others have recognized that mitochondrial dysfunction is the common feature of Dox-induced cardiotoxicity. However, mechanisms underlying mitochondrial disorders remained largely unknown. SESN2, a highly conserved and stress-inducible protein, is involved in mitochondrial function and autophagy in cardiovascular diseases. This study aimed to investigate whether SESN2 affects Dox-induced cardiotoxicity and the underlying mechanisms. Sprague-Dawley rats and neonatal rat cardiomyocytes were treated with Dox. SESN2 expression was assessed. The effects of SESN2 on Dox-induced cardiotoxicity were assessed by functional gain and loss experiments. Echocardiographic parameters, morphological and histological analyses, transmission electron microscope and immunofluorescence assays were used to assess cardiac and mitochondrial function. The protein expression of SESN2 was significantly reduced following Dox stimulation. Both knockout of SESN2 by sgRNA and Dox treatment resulted in the inhibition of Parkin-mediated mitophagy, marked cardiomyocytes apoptosis and mitochondria dysfunction. Ectopic expression of SESN2 effectively protected against Dox-induced cardiomyocyte apoptosis, mitochondrial injury and cardiac dysfunction. Mechanistically, SESN2 interacted with Parkin and p62, promoted accumulation of Parkin to mitochondria and then alleviated Dox-caused inhibition of Parkin mediated mitophagy. Ultimately, the clearance of damaged mitochondria and mitochondrial function were improved following SESN2 overexpression. SESN2 protected against Dox-induced cardiotoxicity through improving mitochondria function and mitophagy. These results established SESN2 as a key player in mitochondrial function and provided a potential therapeutic approach to Dox-induced cardiomyopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。