LPA maintains innate antiviral immunity in a pro-active state via STK38L-mediated IRF3 Ser303 phosphorylation

LPA 通过 STK38L 介导的 IRF3 Ser303 磷酸化维持主动状态的先天抗病毒免疫

阅读:3
作者:Shuai Wang, Feng Chu, Ran Xia, Jizhong Guan, Lili Zhou, Xiuwu Fang, Tong Dai, Feng Xie, Long Zhang, Fangfang Zhou

Abstract

Innate immunity is critical for the early detection and elimination of viral invasion. Extracellular signals are crucial for host resistance; however, how extracellular factors prepare the innate immunity for rapid antiviral response remains elusive. Here, we find that serum deprivation largely restricts the innate antiviral responses to RNA and DNA viruses. When serum is supplied, serine/threonine-protein kinase 38-like (STK38L), induced by serum response factor (SRF), phosphorylates IRF3 at Ser303, which prevents IRF3 from proteasome-mediated degradation in the rest state (non-infected), and ensures that enough IRF3 is called in the primed state (infected). STK38L-deficient mice exhibit compromised innate antiviral responses and elevated viral proliferation and mortality. Moreover, lysophosphatidic acid (LPA) or sphingosine 1-phosphate (S1P), the crucial activators of SRF, rescue immunosuppression caused by serum deprivation. These findings identify the SRF-STK38L-IRF3 axis as a novel mechanism that maintains the host in a pro-active state when not infected, which ensures the rapid immune response against virus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。