E-cadherin-expressing feeder cells promote neural lineage restriction of human embryonic stem cells

表达 E-钙粘蛋白的饲养细胞促进人类胚胎干细胞的神经谱系限制

阅读:5
作者:Rebecca N Moore, Jocie F Cherry, Vani Mathur, Rick Cohen, Martin Grumet, Prabhas V Moghe

Abstract

Human embryonic stem cells (hESCs) represent a promising source of tissues of different cell lineages because of their high degree of self-renewal and their unique ability to give rise to most somatic cell lineages. In this article, we report on a new approach to differentiate hESCs into neural stem cells that can be differentiated further into neuronal restricted cells. We have rapidly and efficiently differentiated hESCs into neural stem cells by presenting the cell adhesion molecule, E-cadherin, to undifferentiated hESCs via E-cadherin transfected fibroblast monolayers. The neural restricted progenitor cells rapidly express nestin and beta-III-tubulin, but not glial fibrillary acidic protein (GFAP) during the 1-week E-cadherin induction phase, suggesting that E-cadherin promotes rapid neuronal differentiation. Further, these cells are able to achieve enhanced neuronal differentiation with the addition of exogenous growth factors. Cadherin-induced hESCs show a loss in Oct4 and nestin expression associated with positive staining for vimentin, neurofilament, and neural cell adhesion molecule. Moreover, blocking by functional E-cadherin antibody and failure of paracrine stimulation suggested that direct E-cadherin engagement is necessary to induce neural restriction. By providing hESCs with molecular cues to promote differentiation, we are able to utilize a specific cell-cell adhesion molecule, E-cadherin, to influence the nature and degree of neural specialization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。