Comparison of HIF1A‑AS1 and HIF1A‑AS2 in regulating HIF‑1α and the osteogenic differentiation of PDLCs under hypoxia

缺氧条件下HIF1A‑AS1与HIF1A‑AS2调控HIF‑1α及PDLCs成骨分化的比较

阅读:7
作者:Dongru Chen, Liping Wu, Lu Liu, Qimei Gong, Jinxuan Zheng, Caixia Peng, Jianqing Deng

Abstract

Hypoxia‑inducible factor‑1α (HIF‑1α) is essential for regulating the osteogenic differentiation of periodontal ligament cells (PDLCs). The regulatory mechanism of HIF‑1α transcription is still not clear. Recently, two long non‑coding RNAs, HIF1A antisense RNA 1 (HIF1A‑AS1) and HIF1A antisense RNA 2 (HIF1A‑AS2), were found to regulate HIF‑1α mRNA, but the regulatory mechanisms among HIF‑1α, HIF1A‑AS1 and HIF1A‑AS2 have not been well studied. We hypothesized that HIF1A‑AS1 and HIF1A‑AS2 play important roles in the osteogenic differentiation of PDLCs by regulating HIF‑1α. In the present study, we showed that expression levels of HIF1A‑AS1, HIF1A‑AS2, HIF‑1α and osteogenic biomarkers were time‑dependent under hypoxia. Even though both HIF1A‑AS1 and HIF1A‑AS2 were complementary to HIF‑1α mRNA, only HIF1A‑AS2 showed an inhibitory effect on HIF‑1α in PDLCs. Moreover, HIF‑1α had positive regulatory effects on HIF1A‑AS1 and HIF1A‑AS2. HIF‑1α promoted the osteogenic differentiation of PDLCs, and HIF1A‑AS2 had a negative effect on the osteogenic differentiation of PDLCs. Altogether, the present study revealed the complex relationships among HIF1A‑AS1, HIF1A‑AS2 and HIF‑1α, as well as their roles in regulating the osteogenic differentiation of PDLCs. These findings provide a theoretical basis for promoting periodontal tissue regeneration and repair during orthodontic tooth movement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。