Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal‑regulated kinase 1/2 signaling pathway

成纤维细胞生长因子 21 通过促进成纤维细胞生长因子受体 1-细胞外信号调节激酶 1/2 信号通路保护大鼠心肌细胞免受内质网应激

阅读:8
作者:Pingping Liang, Lin Zhong, Lei Gong, Jiahui Wang, Yujie Zhu, Weifeng Liu, Jun Yang

Abstract

Fibroblast growth factor 21 (FGF21), as an endocrine factor, is secreted into circulation by injured cardiomyocytes. Endoplasmic reticulum (ER) stress-induced apoptosis has been proposed as an important pathophysiological mechanism for cardiomyocyte injury. However, whether the enhanced expression of FGF21 in cardiomyocytes is linked to ER stress, and the effect and underlying mechanism of FGF21 on ER stress-induced cardiomyocyte apoptosis remain unclear. In the present study, it was demonstrated that mild ER stress resulted in upregulated expression levels of FGF21 and its main receptors, as a response to cell compensation, at the induction of ≤5 µM tunicamycin (TM). However, excessive ER stress (TM ≥10 µM) activated the ER stress-mediated apoptosis signaling pathways, including PKR-like ER kinase (PERK)-eukaryotic translational initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-CCAAT/-enhancer-binding protein homologous protein (CHOP) and inositol-requiring kinase 1α (IRE1α)-c-Jun N-terminal kinases (JNK), as well as inhibited the expression of FGF21 and its primary receptors. In addition, FGF21 overexpression provided protection against ER stress-induced cardiomyocyte injury, as evidenced by increased cell viability and reduced apoptosis. These changes were associated with the inhibition of ER stress-mediated apoptosis signaling pathways, as well as increased phosphorylation of FGFR1 and ERK1/2. However, the protective effects of overexpressed FGF21 were abolished following treatment with FGFR1 and ERK1/2 inhibitors. Thus, mild ER stress may induce the expression of FGF21 and its primary receptors in cardiomyocytes. FGF21 inhibits ER stress-induced cardiomyocyte injury as least in part via the FGFR1-ERK1/2 signaling pathway.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。