NOD-like receptors mediate inflammatory lung injury during plateau hypoxia exposure

NOD 样受体介导高原缺氧暴露期间的炎症性肺损伤

阅读:17
作者:Haiyan Wang, Xue Lin, Xiaoyan Pu

Background

The lung is an important target organ for hypoxia treatment, and hypoxia can induce several diseases in the body.

Conclusions

Our study suggested that the NF-κBp65 and p38 MAPK signaling pathways may be activated in the lungs of rats during plateau hypoxia. Upregulated expression of NF-κBp65 and p38 MAPK can promote the transcription of downstream inflammatory factors, thereby aggravating the occurrence and development of lung tissue remodeling.

Methods

We performed transcriptome sequencing for the lungs of rats exposed to plateau hypoxia at 0 day and 28 days. Sequencing libraries were constructed, and enrichment analysis of the differentially expressed genes (DEGs) was implemented using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, experimental validation was executed by quantitative real-time PCR (qRT-PCR) and western blot.

Results

The results showed that the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway that was involved in immunity may play a crucial function in lung injury caused by plateau hypoxia. And the expressions of NOD1, NOD2, IL-1β, TNF-α, IL-6, and IL-18 were higher at 28 days of exposure to plateau hypoxia than that at 0 day. Similarly, CARD9, MYD88, p38 MAPK, and NF-κB p65, which are related to the NF-κB and MAPK signaling pathways, also demonstrated increased expression at 28 days exposure to plateau hypoxia than at 0 day. Conclusions: Our study suggested that the NF-κBp65 and p38 MAPK signaling pathways may be activated in the lungs of rats during plateau hypoxia. Upregulated expression of NF-κBp65 and p38 MAPK can promote the transcription of downstream inflammatory factors, thereby aggravating the occurrence and development of lung tissue remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。