Structure-Based Design of Selective Fat Mass and Obesity Associated Protein (FTO) Inhibitors

基于结构的选择性脂肪量和肥胖相关蛋白 (FTO) 抑制剂设计

阅读:7
作者:Shifali Shishodia, Marina Demetriades, Dong Zhang, Nok Yin Tam, Pratheesh Maheswaran, Caitlin Clunie-O'Connor, Anthony Tumber, Ivanhoe K H Leung, Yi Min Ng, Thomas M Leissing, Afaf H El-Sagheer, Eidarus Salah, Tom Brown, Wei Shen Aik, Michael A McDonough, Christopher J Schofield

Abstract

FTO catalyzes the Fe(II) and 2-oxoglutarate (2OG)-dependent modification of nucleic acids, including the demethylation of N6-methyladenosine (m6A) in mRNA. FTO is a proposed target for anti-cancer therapy. Using information from crystal structures of FTO in complex with 2OG and substrate mimics, we designed and synthesized two series of FTO inhibitors, which were characterized by turnover and binding assays, and by X-ray crystallography with FTO and the related bacterial enzyme AlkB. A potent inhibitor employing binding interactions spanning the FTO 2OG and substrate binding sites was identified. Selectivity over other clinically targeted 2OG oxygenases was demonstrated, including with respect to the hypoxia-inducible factor prolyl and asparaginyl hydroxylases (PHD2 and FIH) and selected JmjC histone demethylases (KDMs). The results illustrate how structure-based design can enable the identification of potent and selective 2OG oxygenase inhibitors and will be useful for the development of FTO inhibitors for use in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。