Characterization of Maternal and Fetal CYP3A-Mediated Progesterone Metabolism

母体和胎儿 CYP3A 介导的孕酮代谢的特征

阅读:7
作者:Sara K Quinney, Tara Benjamin, Xiaomei Zheng, Avinash S Patil

Conclusions

Maternal clearance of progesterone by hepatic CYP450's is driven primarily by CYP3A4, with limited contributions from CYP3A5 and CYP3A7.

Methods

In vitro progesterone metabolism was characterized in human liver microsomes (HLMs) with and without selective cytochrome P450 inhibitors and in recombinant CYP3A4, CYP3A5, and CYP3A7. 6β-hydroxyprogesterone (6β-OHP) and 16α-hydroxyprogesterone (16α-OHP) metabolites were quantified by HPLC/UV and fit to the Michaelis-Menten equation to determine Km and Vmax. The effect of CYP3A5 expression on progesterone clearance was determined by in vitro in vivo extrapolation.

Results

Ketoconazole inhibited formation of both 6β-OHP and 16α-OHP more than 95%. 6β-OHP and 16α-OHP were both produced by CYP3A4 (2.3 and 1.3 µL/min/pmol, respectively) to a greater extent than by CYP3A5 (0.09 and 0.003 µL/min/pmol) and CYP3A7 (0.004 and 0.003 µL/min/pmol). Conclusions: Maternal clearance of progesterone by hepatic CYP450's is driven primarily by CYP3A4, with limited contributions from CYP3A5 and CYP3A7.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。