The effects of a combination of ion channel inhibitors on pathology in a model of demyelinating disease

离子通道抑制剂组合对脱髓鞘疾病模型病理的影响

阅读:5
作者:Gopana Gopalasingam, Carole A Bartlett, Terence McGonigle, Maimuna Majimbi, Andrew Warnock, Abbey Ford, Alexander Gough, Lillian M Toomey, Melinda Fitzgerald

Background

Multiple sclerosis (MS) has been shown to feature oxidative damage, which can be modelled using the cuprizone model of demyelinating disease. Oxidative damage can occur as a result of excessive influx of calcium ions (Ca2+) and oligodendroglia are particularly vulnerable. However, the effects of limiting excess Ca2+ influx on oxidative damage, oligodendroglia and myelin structure are unknown.

Conclusion

Our findings suggest that excess Ca2+ influx contributes to protein nitration, and associated changes to OPC densities and Node of Ranvier structure in demyelinating disease.

Methods

The effects of three weeks of cuprizone administration and of treatment with a combination of three ion channel inhibitors (Lomerizine, Brilliant Blue G (BBG) and YM872), were semi-quantified immunohistochemically. Outcomes assessed were protein nitration (3-nitrotyrosine (3NT)) oxidative damage to DNA (8-hydroxy deoxyguanosine (8OHDG)), advanced glycation end-products (carboxymethyl lysine (CML)), immunoreactivity of microglia (Iba1) and astrocytes (glial acidic fibrillary protein (GFAP)), densities of oligodendrocyte precursor cells (OPCs) (platelet derived growth factor alpha receptor (PDGFαR) with olig2) and oligodendrocytes (olig2 and CC1), and structural elements of the Node of Ranvier (contactin associated protein (Caspr)).

Objective

This study investigated the effects of limiting excess Ca2+ flux on oxidative damage and associated changes in oligodendroglial densities and Node of Ranvier structure in the cuprizone model.

Results

The administration of cuprizone resulted in increased protein nitration, DNA damage, and astrocyte and microglial immunoreactivity, a decrease in the density of oligodendrocytes and OPCs, together with altered structure of the Node of Ranvier and reduced myelin basic protein immunoreactivity. Treatment with the ion channel inhibitor combination significantly lowered protein nitration, increased the density of OPCs and reduced the number of atypical Node of Ranvier complexes; other outcomes were unaffected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。