Up-regulated lncRNA5322 elevates MAPK1 to enhance proliferation of hair follicle stem cells as a ceRNA of microRNA-19b-3p

上调 lncRNA5322 可提高 MAPK1 作为 microRNA-19b-3p 的 ceRNA 来增强毛囊干细胞的增殖

阅读:4
作者:Bingjie Cai, Xinxin Wang, Hongtao Liu, Shanshan Ma, Kun Zhang, Yanting Zhang, Qinghua Li, Junmin Wang, Minghao Yao, Fangxia Guan, Guangwen Yin

Abstract

Hair follicle stem cells (HFSCs), located in the bulge region of the follicle, maintain hair follicle growth and cycling. Long non-coding RNAs (lncRNAs), non-protein coding transcripts, are widely known to play critical roles in differentiation and proliferation of stem cells. Therefore, the current study aimed to explore the regulatory roles of lncRNA5322 in HFSCs proliferation and the underlying regulatory mechanisms. Initially, the expression patterns of lncRNA5322 and microRNA-19b-3p (miR-19b-3p) in HFSCs were detected. Subsequently, gain-and loss-of-functions analyses were conducted to explore the roles of lncRNA5322, miR-19b-3p and mitogen-activated protein kinase 1 (MAPK1) in cell proliferation, colony formation and apoptosis of HFSCs, with the expression of cyclin-dependent kinase (CDK)1 and CDK2 examined. Also, the interaction relationships among lncRNA5322, miR-19b-3p and MAPK1 were explored. Furthermore, a mouse model was established to detect the roles of lncRNA5322, miR-19b-3p, and MAPK1 in wound contraction and epidermal regeneration. Over-expressed lncRNA5322 was found to promote proliferation, colony formation ability but inhibit apoptosis of HFSCs, in addition to up-regulation of the expression of CDK1 and CDK2. LncRNA5322 was found to act as a ceRNA of miR-19b-3p which directly targeted MAPK1. Furthermore, up-regulation of lncRNA5322 enhanced wound contraction and epidermal regeneration in vivo by increasing the expression of MAPK1 through functioning as a ceRNA of miR-19b-3p. In summary, the results in this study suggested that lncRNA5322 serves as a ceRNA of miR-19b-3p to elevate the expression of MAPK1, ultimately promoting HFSCs proliferation, wound contraction and epidermal regeneration of mouse model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。