Impact of IgG subclass on molecular properties of monoclonal antibodies

IgG亚类对单克隆抗体分子特性的影响

阅读:5
作者:Yu Tang, Paul Cain, Victor Anguiano, James J Shih, Qing Chai, Yiqing Feng

Abstract

Immunoglobulin G-based monoclonal antibodies (mAbs) have become a dominant class of biotherapeutics in recent decades. Approved antibodies are mainly of the subclasses IgG1, IgG2, and IgG4, as well as their derivatives. Over the decades, the selection of IgG subclass has frequently been based on the needs of Fc gamma receptor engagement and effector functions for the desired mechanism of action, while the effect on drug product developability has been less thoroughly characterized. One of the major reasons is the lack of systematic understanding of the impact of IgG subclass on the molecular properties. Several efforts have been made recently to compare molecular property differences among these IgG subclasses, but the conclusions from these studies are sometimes obscured by the interference from variable regions. To further establish mechanistic understandings, we conducted a systematic study by grafting three independent variable regions onto human IgG1, an IgG1 variant, IgG2, and an IgG4 variant constant domains and evaluating the impact of subclass and variable regions on their molecular properties. Structural and computational analysis revealed specific molecular features that potentially account for the differential behavior of the IgG subclasses observed experimentally. Our data indicate that IgG subclass plays a significant role on molecular properties, either through direct effects or via the interplay with the variable region, the IgG1 mAbs tend to have higher solubility than either IgG2 or IgG4 mAbs in a common pH 6 buffer matrix, and solution behavior relies heavily on the charge status of the antibody at the desirable pH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。