The emotional impact of disrupted environmental contexts: Enrichment loss and coping profiles influence stress response recovery in Long-Evans rats

破坏环境背景的情绪影响:丰富度丧失和应对方式影响 Long-Evans 大鼠的压力反应恢复

阅读:4
作者:Molly Kent, Dmitry Kovalev, Benjamin Hart, Danielle Leserve, Gabriella Handford, Dylan Vavra, Kelly Lambert

Abstract

With increasing rates of anxiety and mood disorders across the world, there is an unprecedented need for preclinical animal models to generate translational results for humans experiencing disruptive emotional symptoms. Considering that life events resulting in a perception of loss are correlated with depressive symptoms, the enrichment-loss rodent model offers promise as a translational model for stress-initiated psychiatric disorders. Additionally, predisposed temperament characteristics such as coping styles have been found to influence an individual's stress response. Accordingly, male rats were profiled as either consistent or flexible copers and assigned to one of three environments: standard laboratory housing, enriched environment, or enriched environment exposure followed by downsizing to standard laboratory cages (i.e., enrichment-loss group). Throughout the study, several behaviors were assessed to determine stress, social, and reward-processing responses. To assess recovery of the stress response, fecal samples were collected following the swim stress in 3-h increments to determine the recovery trajectory of corticosterone (CORT) and dehydroepiandrosterone (DHEA) metabolite levels. Upon death, neural markers of neuroplasticity including doublecortin, glial fibrillary acidic factor, and brain-derived neurotrophic factor were assessed via immunohistochemistry. Results indicated the flexible coping animals in the continuous enriched group had higher DHEA/CORT ratios (consistent with adaptive responses in past research); furthermore, the enrichment-loss animals exhibited a blunted CORT response throughout the assessments and enriched flexible copers had faster CORT recovery rates than consistent copers. Standard housed animals exhibited less exploratory behavior in the open field task and continuous enriched, flexible rats consumed more food rewards than the other groups. No differences in neuroplasticity neural markers were observed. In sum, the results of the present study support past research indicating the disruptive consequences of enrichment-loss, providing evidence that the model represents a valuable approach for the investigation of neurobiological mechanisms contributing to interindividual variability in responses to changing experiential landscapes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。