HMGB1 mediates microbiome-immune axis dysregulation underlying reduced neutralization capacity in obesity-related post-acute sequelae of SARS-CoV-2

HMGB1 介导微生物组免疫轴失调,导致肥胖相关 SARS-CoV-2 急性后遗症中和能力下降

阅读:4
作者:Noelle C Rubas #, Rafael Peres #, Braden P Kunihiro, Nina P Allan, Krit Phankitnirundorn, Riley K Wells, Trevor McCracken, Rosa H Lee, Lesley Umeda, Andie Conching, Ruben Juarez, Alika K Maunakea

Abstract

While obesity is a risk factor for post-acute sequelae of SARS-CoV-2 infection (PASC, "long-COVID"), the mechanism(s) underlying this phenomenon remains poorly understood. To address this gap in knowledge, we performed a 6-week longitudinal study to examine immune activity and gut microbiome dysbiosis in post-acute stage patients recovering from SARS-CoV-2 infection. Self-reported symptom frequencies and blood samples were collected weekly, with plasma assessed by ELISA and Luminex for multiple biomarkers and immune cell profiling. DNA from stool samples were collected at the early stage of recovery for baseline assessments of gut microbial composition and diversity using 16S-based metagenomic sequencing. Multiple regression analyses revealed obesity-related PASC linked to a sustained proinflammatory immune profile and reduced adaptive immunity, corresponding with reduced gut microbial diversity. In particular, enhanced signaling of the high mobility group box 1 (HMGB1) protein was found to associate with this dysregulation, with its upregulated levels in plasma associated with significantly impaired viral neutralization that was exacerbated with obesity. These findings implicate HMGB1 as a candidate biomarker of PASC, with potential applications for risk assessment and targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。