Released lipids regulate transient receptor potential channel (TRP)-dependent oral cancer pain

释放的脂质调节瞬时受体电位通道 (TRP) 依赖性口腔癌疼痛

阅读:4
作者:Shivani Ruparel, Michelle Bendele, Ashley Wallace, Dustin Green

Background

Pain in the head neck area is an early symptom in oral cancer, supporting the hypothesis that cancer cells control the activities of surrounding nociceptors at the site of the tumor. Several reports implicate TRPV1 and TRPA1 in cancer pain, although there is a large gap in knowledge since the mechanisms for tumor-induced activation of these TRP receptors are unknown. Interestingly, TRP-active lipids such as linoleic acid, arachidonic acid, hydroxyoctadecadienoic acid and hydroxyeicosatetraenoic acid are significantly elevated in the saliva of oral cancer patients compared to normal patients, supporting a possible linkage between these lipids and oral cancer pain. We therefore hypothesize that oral squamous cell carcinomas release certain lipids that activate TRPV1 and/or TRPA1 on sensory neurons, contributing to the development of oral cancer pain.

Conclusions

These data reveal a novel mechanism for cancer pain and provide strong direction for future studies evaluating the cellular mechanism regulating the TRP-active lipids by OSCC tumors.

Methods

Lipid extracts were made from conditioned media of three human oral squamous cell carcinoma (OSCC) cell lines as well as one normal human oral keratinocytes cell line. These were then injected intraplantarly into rat hindpaws to measure spontaneous nocifensive behavior, as well as thermal and mechanical allodynia. For interventional experiments, the animals were pretreated with AMG517 (TRPV1 antagonist) or HC030031 (TRPA1 antagonist) prior to extract injection.

Results

These studies demonstrate that lipids released from the three OSCC cell lines, but not the normal cell line, were capable of producing significant spontaneous nocifensive behaviors, as well as thermal and mechanical allodynia. Notably each of the cell lines produced a different magnitude of response for each of three behavioral assays. Importantly, pre-treatment with a TRPVI antagonist blocked lipid-mediated nocifensive and thermal hypersensitivity, but not mechanical hypersensitivity. In addition, pre-treatment with a TRPA1 antagonist only reversed thermal hypersensitivity without affecting lipid-induced nocifensive behavior or mechanical allodynia. Conclusions: These data reveal a novel mechanism for cancer pain and provide strong direction for future studies evaluating the cellular mechanism regulating the TRP-active lipids by OSCC tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。