The deubiquitinase USP13 stabilizes the anti-inflammatory receptor IL-1R8/Sigirr to suppress lung inflammation

去泛素化酶 USP13 可稳定抗炎受体 IL-1R8/Sigirr,从而抑制肺部炎症

阅读:4
作者:Lian Li, Jianxin Wei, Shuang Li, Anastasia M Jacko, Nathaniel M Weathington, Rama K Mallampalli, Jing Zhao, Yutong Zhao

Background

The Single immunoglobin interleukin-1 (IL-1)-related receptor (Sigirr), also known as IL-1R8, has been shown to exhibit broad anti-inflammatory effects against inflammatory diseases including acute lung injury, while molecular regulation of IL-1R8/Sigirr protein stability has not been reported. This study is designed to determine whether stabilization of IL-1R8/Sigirr by a deubiquitinating enzyme (DUB) is sufficient to suppress inflammatory responses and lessen lung inflammation.

Methods

A molecular signature of ubiquitination and degradation of IL-1R8/Sigirr was determined using a receptor ligation chase model. The anti-inflammatory effects on USP13 were investigated. USP13 knockout mice were evaluated for stabilization of IL-1R8/Sigirr and disease phenotype in an acute lung injury model. Findings: IL-1R8/Sigirr degradation is mediated by the ubiquitin-proteasome system, through site-specific ubiquitination. This effect was antagonized by the DUB USP13. USP13 levels correlate directly with IL-1R8/Sigirr, and both proteins were reduced in cells and tissue from mice subjected to inflammatory injury by the TLR4 agonist lipopolysaccharide (LPS). Knockdown of USP13 in cells increased IL-1R8/Sigirr poly-ubiquitination and reduced its stability, which enhanced LPS-induced TLR4 signaling and cytokine release. Likewise, USP13-deficient mice were highly susceptible to LPS or Pseudomonas aeruginosa models of inflammatory lung injury. IL-1R8/Sigirr overexpression in cells or by pulmonary viral transduction attenuated the inflammatory phenotype conferred by the USP13-/- genotype. Interpretation: Stabilization of IL-1R8/Sigirr by USP13 describes a novel anti-inflammatory pathway in diseases that could provide a new strategy to modulate immune activation. FUND: This study was supported by the US National Institutes of Health (R01HL131665, HL136294 to Y.Z., R01 GM115389 to J.Z.).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。