The Urinary Bladder is Rich in Glycosphingolipids Composed of Phytoceramides

膀胱中含有丰富的由植物神经酰胺组成的糖鞘脂

阅读:6
作者:Takashi Watanabe, Akemi Suzuki, Shin Ohira, Shinji Go, Yuta Ishizuka, Takuya Moriya, Yoshiyuki Miyaji, Tota Nakatsuka, Keita Hirata, Atsushi Nagai, Junko Matsuda

Abstract

Glycosphingolipids (GSLs) are composed of a polar glycan chain and a hydrophobic tail known as ceramide. Together with variation in the glycan chain, ceramides exhibit tissue-specific structural variation in the long-chain base (LCB) and N-acyl chain moieties in terms of carbon chain length, degree of desaturation, and hydroxylation. Here, we report the structural variation in GSLs in the urinary bladders of mice and humans. Using TLC, we showed that the major GSLs are hexosylceramide, lactosylceramide, globotriaosylceramide, globotetraosylceramide, Neu5Ac-Gal-Glc-Ceramide, and Neu5Ac-Neu5Ac-Gal-Glc-Ceramide. Our LC-MS analysis indicated that phytoceramide structures with a 20-carbon LCB (4-hydroxyeicosasphinganine) and 2-hydroxy fatty acids are abundant in hexosylceramide and Neu5Ac-Gal-Glc-Ceramide in mice and humans. In addition, quantitative PCR demonstrated that DES2 and FA2H, which are responsible for the generation of 4-hydroxysphinganine and 2-hydroxy fatty acid, respectively, and SPTLC3 and SPTSSB, which are responsible for the generation of 20-carbon LCBs, showed significant expressions in the epithelial layer than in the subepithelial layer. Immunohistochemically, dihydroceramide:sphinganine C4-hydroxylase (DES2) was expressed exclusively in urothelial cells of the urinary bladder. Our findings suggest that these ceramide structures have an impact on membrane properties of the stretching and shrinking in transitional urothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。