Rejuvenation of mesenchymal stem cells by extracellular vesicles inhibits the elevation of reactive oxygen species

细胞外囊泡使间充质干细胞再生可抑制活性氧的升高

阅读:8
作者:Vuong Cat Khanh, Toshiharu Yamashita, Kinuko Ohneda, Chiho Tokunaga, Hideyuki Kato, Motoo Osaka, Yuji Hiramatsu, Osamu Ohneda

Abstract

Aging induces numerous cellular disorders, such as the elevation of reactive oxygen species (ROS), in a number type of cells, including mesenchymal stem cells (MSCs). However, the correlation of ROS and impaired healing abilities as well as whether or not the inhibition of elevating ROS results in the rejuvenation of elderly MSCs is unclear. The rejuvenation of aged MSCs has thus recently received attention in the field of regenerative medicine. Specifically, extracellular vesicles (EVs) act as a novel tool for stem cell rejuvenation due to their gene transfer ability with systemic effects and safety. In the present study, we examined the roles of aging-associated ROS in the function and rejuvenation of elderly MSCs by infant EVs. The data clearly showed that elderly MSCs exhibited the downregulation of superoxide dismutase (SOD)1 and SOD3, which resulted in the elevation of ROS and downregulation of the MEK/ERK pathways, which are involved in the impairment of the MSCs' ability to decrease necrotic area in the skin flap model. Furthermore, treatment with the antioxidant Edaravone or co-overexpression of SOD1 and SOD3 rescued elderly MSCs from the elevation of ROS and cellular senescence, thereby improving their functions. Of note, infant MSC-derived EVs rejuvenated elderly MSCs by inhibiting ROS production and the acceleration of cellular senescence and promoting the proliferation and in vivo functions in both type 1 and type 2 diabetic mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。