Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction

铁抑素-1 减轻脂多糖引起的心脏功能障碍

阅读:10
作者:Zheng Xiao, Bin Kong, Jin Fang, Tianyou Qin, Chang Dai, Wei Shuai, He Huang

Abstract

Cardiac dysfunction is a common complication of sepsis, and is attributed to severe inflammatory responses. Ferroptosis is reported to be involved in sepsis-induced cardiac inflammation. Therefore, we speculated that ferrostatin-1 (Fer-1), a ferroptosis inhibitor, improves cardiac dysfunction caused by sepsis. An intraperitoneal injection of lipopolysaccharide (LPS) was performed to induce a rat cardiac dysfunction model. Echocardiography, cardiac histopathology, biochemical and western blot results were analyzed. Twelve hours after the LPS injection, LPS-treated rats exhibited deteriorating cardiac systolic function, increased levels of cardiac injury markers and levels of ferroptosis markers prostaglandin endoperoxide synthase 2 (PTGS2). Additionally, LPS increased iron deposition in the myocardium, with downregulating ferroportin (FPN, SLC40A1) and transferrin receptor (TfR)expression, and upregulating ferritin light chain (FTL) and ferritin heavy chain (FTH1) expression. Meanwhile, LPS also increased lipid peroxidation in the rat heart by decreasing the expression of glutathione peroxidase 4 (GPX4). Moreover, the expression of inflammatory cytokines, such as tumor necrosis-alpha (TNF-α), interleukin-1 (IL-1β), and interleukin-6 (IL-6), and inflammatory cell infiltration were also increased following LPS challenge. Finally, the abovementioned adverse effects of LPS were relieved by Fer-1 except for TfR expression. Mechanistically, Fer-1 significantly reduced the levels of toll-like receptor 4 (TLR4), phospho-nuclear factor kappa B (NF-κB), and phospho-inhibitor of kappa Bα (IκBα) in LPS-treated rats. In summary, these findings imply that Fer-1 improved sepsis-induced cardiac dysfunction at least partially via the TLR4/NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。