Ultrasonic irradiation and SonoVue microbubbles-mediated RNA interference targeting PRR11 inhibits breast cancer cells proliferation and metastasis, but promotes apoptosis

超声波照射和SonoVue微泡介导的针对PRR11的RNA干扰抑制乳腺癌细胞增殖和转移,但促进细胞凋亡

阅读:5
作者:Hui Luo #, Jian Li #, Qi Lin, Xiaojun Xiao, Yang Shi, Xiuqin Ye, Zhanghong Wei, Yingying Liu, Jinfeng Xu

Abstract

The present study compared the effects of ultrasonic irradiation and SonoVue microbubbles (US) or Lipofectamine 3000 on the transfection of small interfering RNA for PRR11 (siPRR11) and Proline-rich protein 11 (PRR11) overexpression plasmid into breast cancer cells. SiPRR11 and PRR11 overexpression plasmid were transfected into breast cancer MCF7 cells mediated by US and Lipofectamine 3000. PRR11 expressions in breast cancer and normal tissues were determined using Gene Expression Profiling Interactive Analysis (GEPIA). The viability, proliferation, migration, invasion and apoptosis of breast cancer cells were respectively measured by MTT assay, clone formation assay, scratch wound-healing assay, Transwell assay and flow cytometry. PRR11 and epithelial-to-mesenchymal transition (EMT)-related and apoptosis-related (B-cell lymphoma 2, Bcl-2; Bcl-2-associated protein X, Bax) proteins' expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as appropriate. As ultrasonic intensity increased, the viability of MCF7 cells was decreased. Results from GEPIA suggested that PRR11 was up-regulated in breast cancer. Silencing PRR11 mediated by US showed a higher efficiency than by Lipofectamine 3000. SiPRR11 transfected by Lipofectamine 3000 suppressed cells growth and metastasis, while promoted cell apoptosis. Moreover, E-cadherin (E-cad) and Bax expressions were high but N-cadherin (N-cad), Snail and Bcl-2 expressions were low. However, overexpressed PRR11 caused the opposite effects. More importantly, transfection of siPRR11 and PRR11 overexpression plasmid using US had a higher efficacy than using Lipofectamine 3000. US transfection of PRR11 siRNA showed better effects on inhibiting breast cancer progression. The current findings contribute to a novel treatment for breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。