Calcitriol stimulates prolactin expression in non-activated human peripheral blood mononuclear cells: breaking paradigms

骨化三醇刺激非活化人外周血单核细胞中催乳素的表达:打破范式

阅读:3
作者:Lorenza Díaz, Isela Martínez-Reza, Rocío García-Becerra, Leticia González, Fernando Larrea, Isabel Méndez

Abstract

Calcitriol, the hormonal form of vitamin D(3), exerts immunomodulatory effects through the vitamin D(3) receptor (VDR) and increases prolactin (PRL) expression in the pituitary and decidua. Nevertheless, the effects of calcitriol upon lymphocyte PRL have not been evaluated. Therefore, we investigated calcitriol effects upon PRL in resting and phytohemagglutinin-activated human peripheral blood mononuclear cells (PBMNC) and Jurkat T lymphoma cells. Immunoblots showed constitutive expression of the 50-kDa VDR species in activated PBMNC and Jurkat cells, while a 75-kDa species was recognized in both resting and activated-PBMNC. Only in resting PBMNC calcitriol significantly stimulated PRL expression in a dose-dependent manner. The positive control CYP24A1, a highly VDR-responsive gene, was stimulated by calcitriol, effect that was stronger in resting than in activated-PBMNC (P<0.05), and without effect in Jurkat cells. Calcitriol upregulation of PRL and CYP24A1 was significantly inhibited by the VDR antagonist TEI-9647. EMSA showed that resting PBMNC contain a protein that binds to DR3-type VDRE. Cell activation reduced basal CYP24A1 while induced CYP27B1, VDR and pregnane X receptor (PXR) expression. In summary, calcitriol stimulated PRL and CYP24A1 gene expression in quiescent lymphocytes through a VDR-mediated mechanism. Our results suggest that the 75-kDa VDR species could be participating in calcitriol-mediated effects, and that activation induces factors such as PXR that restrain VDR transcriptional processes. This study supports the presence of a functional VDR in quiescent lymphocytes, providing evidence to reevaluate the VDR paradigm that assumes that lymphocytes respond to calcitriol only after activation. Altogether, our results offer new insights into the mechanisms whereby PRL is regulated in immune cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。