Design and Synthesis of Novel Indole Ethylamine Derivatives as a Lipid Metabolism Regulator Targeting PPARα/CPT1 in AML12 Cells

新型吲哚乙胺衍生物的设计与合成及其作为脂质代谢调节剂在AML12细胞中的应用

阅读:5
作者:Yu-Chen Liu, Gang Wei, Zhi-Qiang Liao, Fang-Xin Wang, Chunxiao Zong, Jiannan Qiu, Yifei Le, Zhi-Ling Yu, Seo Young Yang, Heng-Shan Wang, Xiao-Bing Dou, Cai-Yi Wang

Abstract

Peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1 (CPT1) are important targets of lipid metabolism regulation for nonalcoholic fatty liver disease (NAFLD) therapy. In the present study, a set of novel indole ethylamine derivatives (4, 5, 8, 9) were designed and synthesized. The target product (compound 9) can effectively activate PPARα and CPT1a. Consistently, in vitro assays demonstrated its impact on the lipid accumulation of oleic acid (OA)-induced AML12 cells. Compared with AML12 cells treated only with OA, supplementation with 5, 10, and 20 μM of compound 9 reduced the levels of intracellular triglyceride (by 28.07%, 37.55%, and 51.33%) with greater inhibitory activity relative to the commercial PPARα agonist fenofibrate. Moreover, the compound 9 supplementations upregulated the expression of hormone-sensitive triglyceride lipase (HSL) and adipose triglyceride lipase (ATGL) and upregulated the phosphorylation of acetyl-CoA carboxylase (ACC) related to fatty acid oxidation and lipogenesis. This dual-target compound with lipid metabolism regulatory efficacy may represent a promising type of drug lead for NAFLD therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。