Exogenous d-β-hydroxybutyrate lowers blood glucose in part by decreasing the availability of L-alanine for gluconeogenesis

外源性 d-β-羟基丁酸降低血糖的部分原因是它降低了 L-丙氨酸用于糖异生的可用性

阅读:5
作者:Adrian Soto-Mota, Nicholas G Norwitz, Rhys D Evans, Kieran Clarke

Background

Interventions that induce ketosis simultaneously lower blood glucose and the explanation for this phenomenon is unknown. Additionally, the glucose-lowering effect of acute ketosis is greater in people with type 2 diabetes (T2D). On the contrary, L-alanine is a gluconeogenic substrate secreted by skeletal muscle at higher levels in people with T2D and infusing of ketones lower circulating L-alanine blood levels. In this study, we sought to determine whether supplementation with L-alanine would attenuate the glucose-lowering effect of exogenous ketosis using a ketone ester (KE).

Conclusions

The glucose-lowering effect of acutely elevated βHB is partially due to βHB decreasing L-alanine availability as a substrate for gluconeogenesis.

Methods

This crossover study involved 10 healthy human volunteers who fasted for 24 h prior to the ingestion of 25 g of d-β-hydroxybutyrate (βHB) in the form of a KE drink (ΔG® ) on two separate visits. During one of the visits, participants additionally ingested 2 g of L-alanine to see whether L-alanine supplementation would attenuate the glucose-lowering effect of the KE drink. Blood L-alanine, L-glutamine, glucose, βHB, free fatty acids (FFA), lactate and C-peptide were measured for 120 min after ingestion of the KE, with or without L-alanine. Findings: The KE drinks elevated blood βHB concentrations from negligible levels to 4.52 ± 1.23 mmol/L, lowered glucose from 4.97 ± SD 0.39 to 3.77 ± SD 0.40 mmol/L, and lowered and L-alanine from 0.56 ± SD 0.88 to 0.41 ± SD 0.91 mmol/L. L-alanine in the KE drink elevated blood L-Alanine by 0.68 ± SD 0.15 mmol/L, but had no significant effect on blood βHB, L-glutamine, FFA, lactate, nor C-peptide concentrations. By contrast, L-alanine supplementation significantly attenuated the ketosis-induced drop in glucose from 28% ± SD 8% to 16% ± SD 7% (p < .01). Conclusions: The glucose-lowering effect of acutely elevated βHB is partially due to βHB decreasing L-alanine availability as a substrate for gluconeogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。