USF3 modulates osteoporosis risk by targeting WNT16, RANKL, RUNX2, and two GWAS lead SNPs rs2908007 and rs4531631

USF3 通过靶向 WNT16、RANKL、RUNX2 和两个 GWAS 主导 SNP rs2908007 和 rs4531631 来调节骨质疏松症风险

阅读:4
作者:Weiyuan Ye, Ya Wang, Sasa Hou, Bing Mei, Xinhong Liu, Han Huang, Qian Zhou, Yajing Niu, Yuanyuan Chen, Manling Zhang, Qingyang Huang

Abstract

Osteoporotic fractures cause major morbidity and mortality in the aging population. Genome-wide association studies (GWAS) have identified USF3 as the novel susceptibility gene of osteoporosis. However, the functional role in bone metabolism and the target gene of the basic helix-loop-helix transcription factor USF3 are unclear. Here, we show that USF3 enhances osteoblast differentiation and suppresses osteoclastogenesis in cultured human osteoblast-like U-2OS cells. Mechanistic studies revealed that transcription factor USF3 antagonistically interacts with anti-osteogenic TWIST1/TCF12 heterodimer in the WNT16 and RUNX2 promoter, and counteracts CREB1 and JUN/FOS in the RANKL promoter. Importantly, the osteoporosis GWAS variant g.1744A>G (rs2908007A>G) located in the WNT16 promoter confers G-allele-specific transcriptional modulation by USF3, TWIST1/TCF12 and TBX5/TBX15, and USF3 transactivates the osteoclastogenesis suppressor WNT16 promoter activity and antagonizes the repression of WNT16 by TWIST1 and TCF12. The risk G allele of osteoporosis GWAS variant g.3260A>G (rs4531631A>G) in the RANKL promoter facilitates the binding of CREB1 and JUN/FOS and enhances transactivation of the osteoclastogenesis contributor RANKL that is inhibited by USF3. Our findings uncovered the functional mechanisms of osteoporosis novel GWAS-associated gene USF3 and lead single nucleotide polymorphisms rs2908007 and rs4531631 in the regulation of bone formation and resorption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。