Rapidly responsive smart adhesive-coated micropillars utilizing catechol-boronate complexation chemistry

利用儿茶酚-硼酸盐络合化学制备快速响应的智能粘合剂涂层微柱

阅读:5
作者:Ameya R Narkar, Chito Kendrick, Kishan Bellur, Timothy Leftwich, Zhongtian Zhang, Bruce P Lee

Abstract

Smart adhesive hydrogels containing 10 mol% each of dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (APBA) were polymerized in situ onto polydimethylsiloxane (PMDS) micropillars with different aspect ratios (AR = 0.4, 1 and 2). Using Johnson-Kendall-Roberts (JKR) contact mechanics tests, the adhesive-coated pillars demonstrated strong wet adhesion at pH 3 (Wadh = 420 mJ m-2) and can be repeatedly deactivated and reactivated by changing the pH value (pH 9 and 3, respectively). When compared to the bulk adhesive hydrogel of the same composition, the adhesive-coated pillars exhibited a significantly faster rate of transition (1 min) between strong and weak adhesion. This was attributed to an increased surface area to volume ratio of the adhesive hydrogel-coated pillars, which permitted rapid diffusion of ions into the adhesive matrix to form or break the catechol-boronate complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。