Critical role of the α1-Na(+), K(+)-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain

α1-Na(+)、K(+)-ATPase亚基在啮齿动物细胞对乌巴因的细胞毒作用不敏感中起关键作用

阅读:7
作者:Olga A Akimova, Artem M Tverskoi, Larisa V Smolyaninova, Alexander A Mongin, Olga D Lopina, Jennifer La, Nickolai O Dulin, Sergei N Orlov

Abstract

In rodents, ubiquitous α1-Na(+), K(+)-ATPase is inhibited by ouabain and other cardiotonic steroids (CTS) at ~10(3)-fold higher concentrations than those effective in other mammals. To examine the specific roles of the CTS-sensitive α1S- and CTS-resistant α1R-Na(+), K(+)-ATPase isoforms, we compared the effects of ouabain on intracellular Na(+) and K(+) content, cell survival, and mitogen-activated protein kinases (MAPK) in human and rat vascular smooth muscle cells (HASMC and RASMC), human and rat endothelial cells (HUVEC and RAEC), and human and rat brain astrocytes. 6-h exposure of HASMC and HUVEC to 3 μM ouabain dramatically increased the intracellular [Na(+)]/[K(+)] ratio to the same extend as in RASMC and RAEC treated with 3000 μM ouabain. In 24, 3 μM ouabain triggered the death of all types of human cells used in this study. Unlike human cells, we did not detect any effect of 3000-5000 μM ouabain on the survival of rat cells, or smooth muscle cells from mouse aorta (MASMC). Unlike in the wild-type α1(R/R) mouse, ouabain triggered death of MASMC from α1(S/S) mouse expressing human α1-Na(+), K(+)-ATPase. Furthermore, transfection of HUVEC with rat α1R-Na(+), K(+)-ATPase protected them from the ouabain-induced death. In HUVEC, ouabain led to phosphorylation of p38 MAPK, whereas in RAEC it stimulated phosphorylation of ERK1/2. Overall, our results, demonstrate that the drastic differences in cytotoxic action of ouabain on human and rodent cells are caused by unique features of α1S/α1R-Na(+), K(+)-ATPase, rather than by any downstream CTS-sensitive/resistant components of the cell death machinery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。