The SOX4/miR-17-92/RB1 Axis Promotes Prostate Cancer Progression

SOX4/miR-17-92/RB1 轴促进前列腺癌进展

阅读:8
作者:Hui Liu, Zhen Wu, Haibin Zhou, Wenjie Cai, Xinjun Li, Jing Hu, Lin Gao, Tingting Feng, Lin Wang, Xijia Peng, Mei Qi, Long Liu, Bo Han

Abstract

Although androgen-deprivation treatment (ADT) is the main treatment for advanced prostate cancer (PCa), it eventually fails. This failure invariably leads to castration-resistant prostate cancer (CRPC) and the development of the neuroendocrine (NE) phenotype. The molecular basis for PCa progression remains unclear. Previously, we and others have demonstrated that the sex-determining region Y-box 4 (SOX4) gene, a critical developmental transcription factor, is overexpressed and associated with poor prognosis in PCa patients. In this study, we show that SOX4 expression is associated with PCa progression and the development of the NE phenotype in androgen deprivation conditions. High-throughput microRNA profiling and bioinformatics analyses suggest that SOX4 may target the miR-17-92 cluster. SOX4 transcriptionally upregulates miR-17-92 cluster expression in PCa cells. SOX4-induced PCa cell proliferation, migration, and invasion are also mediated by miR-17-92 cluster members. Furthermore, RB1 is a target gene of miR-17-92 cluster. We found that SOX4 downregulates RB1 protein expression by upregulating the miR-17-92 expression. In addition, SOX4-knockdown restrains NE phenotype and PCa cell proliferation. Clinically, the overexpression of miR-17-92 members is shown to be positively correlated with SOX4 expression in PCa patients, whereas RB1 expression is negatively correlated with SOX4 expression in patients with the aggressive PCa phenotype. Collectively, we propose a novel model of a SOX4/miR-17-92/RB1 axis that may exist to promote PCa progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。