Conclusions
These results indicate that ME protects cognition and neurons in AD-like models induced by Aβ via reduction of tau phosphorylation and apoptosis through GSK-3β inactivation.
Methods
To examine the protective effect of ME, we measured cell viability, cytotoxicity, and survival in rat primary hippocampal cultures. We performed behavioral tests and histological analysis in mouse models of AD induced by Aβ(25-35) toxicity. To investigate the mechanism underlying the protective effect, we performed western blotting using antibodies against apoptotic markers as well as the nonphosphorylated and phosphorylated forms of Akt, glycogen synthase kinase-3β (GSK-3β), and tau. We also measured apoptotic marker fluorescence intensity.
Results
ME significantly attenuated Aβ-induced cell damage, enhanced Akt and GSK-3β phosphorylation, and reduced tau phosphorylation. ME reduced apoptotic markers that were activated by GSK-3β, and reduced reactive oxygen species production. Further, ME decreased the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X expression ratio, mitochondria depolarization, cytochrome c release from mitochondria, and caspase-3 activation. We confirmed that ME treatment improved cognitive impairment and neuronal cell death induced by Aβ(25-35) toxicity in the mouse hippocampus via its antiapoptotic activity. Conclusions: These results indicate that ME protects cognition and neurons in AD-like models induced by Aβ via reduction of tau phosphorylation and apoptosis through GSK-3β inactivation.
