Immunohistochemical analysis of histone H3 acetylation in the trigeminal root entry zone in an animal model of trigeminal neuralgia

三叉神经痛动物模型中三叉神经根入口区组蛋白H3乙酰化的免疫组织化学分析

阅读:3
作者:Ren Lin, Lili Luo, Yiran Gong, Jingsheng Zheng, Shuiyue Wang, Junjie Du, Daoshu Luo

Conclusions

These results suggested that chronic compression of the trigeminal nerve root may be involved in the pathogenesis of TN in an animal model by influencing the plasticity of the CNS-PNS transitional zone and the level of histone acetylation in the TREZ.

Methods

An animal model of TN was established, and adult male Sprague-Dawley rats were randomly assigned to a TN group with trigeminal nerve root compression, sham operation group, TN+HDACi group (TN plus selective histone deacetylase inhibitor injection into the TREZ), or TN+Veh group (TN plus vehicle injection into the TREZ). To measure the length of the central portion of the TREZ from the junction of the trigeminal nerve root entering the pons to the interface of the dome-shaped CNS-PNS transitional zone, immunofluorescent staining of glia and glial nuclei was performed using glial fibrillary acidic protein (GFAP) antibody and DAPI, respectively. To investigate the acetylation of histone H3 within the TREZ in a TN animal model group and a sham operation group, localization of histone H3K9, H3K18, and H3K27 acetylation was examined via immunohistochemical staining methods.

Objective

The trigeminal root entry zone (TREZ) is a transitional zone between the central nervous system (CNS) and peripheral nervous system (PNS), adjacent to the brainstem. Microvascular compression of the TREZ has been considered to be the primary etiology in most cases of trigeminal neuralgia (TN), but whether epigenetic regulation is involved in the pathogenesis of TN is still unclear. Therefore, this study was designed to investigate the epigenetic regulation of histone H3 acetylation in the TREZ in an animal model of TN.

Results

Measurements of the CNS-PNS transitional zone in the TREZ revealed that the average length from the junction of the trigeminal nerve root connecting the pons to the glial fringe of the TREZ in the TN group was longer than that in the sham operation group (p < 0.05) and that the interface gradually migrated distally. Cells that stained positive for acetylated histone H3K9, H3K18, and H3K27 were distributed around both sides of the border of the CNS-PNS junction in the TREZ. The ratio of immunoreactive H3K9-, H3K18- and H3K27-positive cells in the TN group was obviously higher than that in the sham operation group on postoperative days 7, 14, 21, and 28 (p < 0.05). Conclusions: These results suggested that chronic compression of the trigeminal nerve root may be involved in the pathogenesis of TN in an animal model by influencing the plasticity of the CNS-PNS transitional zone and the level of histone acetylation in the TREZ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。