Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage

褪黑激素通过 AMPK 抑制骨髓间充质干细胞中线粒体氧化损伤期间 ER 应激依赖性促凋亡作用

阅读:6
作者:Chongxi Fan, Jianyu Feng, Chi Tang, Zhengbin Zhang, Yingtong Feng, Weixun Duan, Mingming Zhai, Zedong Yan, Liwen Zhu, Lele Feng, Hanzhao Zhu, Erping Luo

Background

Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury.

Conclusions

Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.

Methods

Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors.

Results

Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-L-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. Conclusions: Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。