H2S attenuates endoplasmic reticulum stress in hypoxia-induced pulmonary artery hypertension

H2S 减轻缺氧诱发的肺动脉高压中的内质网应激

阅读:4
作者:Jianjun Wu, Weili Pan, Chao Wang, Hui Dong, Lei Xing, Jingbo Hou, Shaohong Fang, Hulun Li, Fan Yang, Bo Yu

Background

Previous studies have found that hydrogen sulfide (H2S) has multiple functions such as anti-inflammatory, antioxidative in addition to biological effects among the various organs. Exaggerated proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key component of vascular remodeling. We hypothesized that endogenous bioactive molecular known to suppress endoplasmic reticulum (ER) stress signaling, like H2S, will inhibit the disruption of the ER-mitochondrial unit and prevent/reverse pulmonary arterial hypertension (PAH).

Conclusion

H2S effectively inhibits hypoxia-induced increase in cell proliferation, migration, and oxidative stress in PASMCs, and NOX-4 might be the underlying mechanism of PAH. Attenuating ER stress with exogenous H2S may be a novel therapeutic strategy in pulmonary hypertension with high translational potential.

Results

A hypoxic model was established with PASMCs to investigate the possible role of H2S in PAH. Effects of H2S on proliferation of PASMCs were evaluated by CCK-8 and EdU assay treated with or without GYY4137 (donor of H2S). H2S significantly inhibited hypoxia-induced increase in PASMCs proliferation in a dose-dependent manner. H2S by intraperitoneal injection with rats both prevented and reversed chronic hypoxia-induced pulmonary hypertension in rats, decreasing pulmonary vascular resistance, pulmonary artery remodeling and right ventricular hypertrophy, and improving functional capacity without affecting systemic hemodynamic. Exogenous H2S suppressed ER stress indexes in vivo and in vitro, decreased activating transcription factor 6 activation, and inhibited the hypoxia-induced decrease in mitochondrial calcium and mitochondrial function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。