Augmented anticancer effect and antibacterial activity of silver nanoparticles synthesized by using Taxus wallichiana leaf extract

利用红豆杉叶提取物合成的银纳米粒子增强抗癌作用和抗菌活性

阅读:6
作者:Aliya Yousaf, Muhammad Waseem, Aneela Javed, Sofia Baig, Bushra Ismail, Ayesha Baig, Irum Shahzadi, Shamyla Nawazish, Iftikhar Zaman

Background

Taxus wallichiana is an evergreen tree species found in the Himalayan region of Pakistan. The tree possesses important secondary metabolites such as Taxol that has been implicated in treating breast, ovarian and colon cancer. Therefore keeping in view the importance of this plant species, silver nanoparticles were synthesized using Taxus wallichiana aqueous leaf extract and evaluated for their anti-bacterial and anti-cancer properties.

Methods

Silver (Ag) nanoparticles (NPs) were characterized for their optical, morphological and structural features using techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) and were evaluated for their antibacterial activity and anti-cancer activity using U251 cell line.

Results

The study showed that the UV-absorbance peak of Ag2O NPs at 450 nm shifted to 410 nm, affirming the formation of leaf extract Ag NPs. Similarly structural studies revealed the crystalline nature of the cubic structure of the Ag crystal with an average crystallite size of 29 nm. FTIR analysis exhibited the existence of different functional elements including O-H and N-H and phenolic groups. Non-spherical glomerular shaped Taxus wallichiana Ag NPs were observed from SEM studies and EDX profile showed Ag as the main element along with constituent of biological origin. The synthesized Ag NPs showed significant antibacterial activity against Salmonella typhi, and Staphylococcus aureus. The cytotoxic activity of Ag NPs on U251 brain cancer cells showed a synergistic effect with 10 ug/mL concentration after 48 and 72 h incubation based on cell viability assay indicating promising glioblastoma drug potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。