Downregulation of Pin1 in human atherosclerosis and its association with vascular smooth muscle cell senescence

Pin1 在人动脉粥样硬化中的下调及其与血管平滑肌细胞衰老的关系

阅读:12
作者:Lei Lv, Meng Ye, Rundan Duan, Kai Yuan, Jiaquan Chen, Wei Liang, Zhaoxiong Zhou, Lan Zhang

Conclusions

Altogether this work supports a role for Pin1 as a vital modulator of VSMC senescence, thereby providing a novel target for regulation and control of atherosclerosis.

Methods

Immunohistochemistry and Western blotting were used to assess Pin1 protein level in human normal and atherosclerotic tissues. β-galactosidase staining, cumulative population doubling level, telomerase activity, and relative telomere length measurement were used to confirm VSMC senescence. The expressions of Pin1 and other genes involved in this research were analyzed by quantitative reverse-transcription polymerase chain reaction and Western blotting in VSMCs. Apolipoprotein E gene-deleted mice (ApoE-/-) fed a high-fat diet were treated with juglone or 10% ethanol, respectively, for 3 weeks. The extent of atherosclerosis was evaluated by Oil Red O, Masson trichrome staining, and immunohistology.

Objective

Pin1 is prevalently overexpressed in human cancers and implicated to regulate cell growth and apoptosis. Thus far, however, no role for Pin1 has been described in modulating vascular smooth muscle cell (VSMC) senescence.

Results

Pin1 protein level decreased in human atherosclerotic tissues and VSMCs, synchronously with increased VSMC senescence. Adenoviral-mediated Pin1 overexpression rescued cellular senescence in atherosclerotic VSMCs, with concurrent down-regulation of P53, p21, growth arrest and DNA-damage-inducible protein 45-alpha (Gadd45a), phosphorylated retinoblastoma (p-pRb), p65 and upregulation of cyclin subfamilies (cyclin B, D, and E), and cyclin-dependent kinase subfamilies (2, 4, and 6), whereas Pin1 knockdown resulted in the converse effects, indicating that VSMC senescence mediated by Pin1 is an integrated response to diverse signals. In vivo data from ApoE-/- mice showed that treatment of juglone led to accelerated atherosclerosis development. Conclusions: Altogether this work supports a role for Pin1 as a vital modulator of VSMC senescence, thereby providing a novel target for regulation and control of atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。