Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids

樟芝中的类固醇化合物 Antcin A 可通过模仿糖皮质激素发挥抗炎作用

阅读:6
作者:Yi-ching Chen, Ya-lin Liu, Feng-yin Li, Chi-I Chang, Sheng-yang Wang, Kuo-yang Lee, Shun-lai Li, Yi-peng Chen, Tzyy-rong Jinn, Jason T C Tzen

Aim

To determine the active ingredient of Niuchangchih (Antrodia camphorata) responsible for its anti-inflammatory effects and the relevant molecular mechanisms.

Conclusion

The anti-inflammatory effect of Niuchangchih is, at least, partly attributed to antcin A that mimics glucocorticoids and triggers translocation of glucocorticoid receptor into nucleus to initiate the suppressing inflammation.

Methods

Five major antcins (A, B, C, H, and K) were isolated from fruiting bodies of Niuchangchih. Structural similarity between the antcins and 2 glucocorticoids (cortisone and dexamethasone) was compared. After incubation with each compound, the cytosolic glucocorticoid receptor (GR) was examined for its migration into the nucleus. Mo lecular docking was performed to model the tertiary structure of GR associated with antcins.

Results

Incubation with cortisone, dexamethasone or antcin A (but not antcins B, C, H, and K) led to the migration of glucocorticoid receptor into the nucleus. The minimal concentration of antcin A, cortisone and dexamethasone to induce nuclear migration of glucocorticoid receptor was 10, 1, and 0.1 mol/L, respectively. The results are in agreement with the simulated binding affinity scores of these three ligands docking to the glucocorticoid receptor. Molecular modeling indicates that C-7 of antcin A or glucocorticoids is exposed to a hydrophobic region in the binding cavity of the glucocorticoid receptor, and the attachment of a hydrophilic group to C-7 of the other four antcins presumably results in their being expelled when docking to the cavity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。