Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain

通过 PAM 相互作用域的定向诱变提高酵母中高保真 SpyCas9 形式的活性

阅读:8
作者:Artem I Davletshin, Anna A Matveeva, Stanislav S Bachurin, Dmitry S Karpov, David G Garbuz

Abstract

CRISPR/Cas systems are used for genome editing, both in basic science and in biotechnology. However, CRISPR/Cas editors have several limitations, including insufficient specificity leading to "off-targets" and the dependence of activity on chromatin state. A number of highly specific Cas9 variants have now been obtained, but most of them are characterized by reduced activity on eukaryotic chromatin. We identified a spatial cluster of amino acid residues in the PAM-recognizing domain of Streptococcus pyogenes Cas9, whose mutations restore the activity of one of the highly specific forms of SpyCas9 without reducing its activity in Saccharomyces cerevisiae. In addition, one of these new mutations also increases the efficiency of SpyCas9-mediated editing of a site localized on the stable nucleosome. The improved Cas9 variants we obtained, which are capable of editing hard-to-reach regions of the yeast genome, may help in both basic research and yeast biotechnological applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。