The effects of hypercapnia on cortical capillary transit time heterogeneity (CTH) in anesthetized mice

高碳酸血症对麻醉小鼠皮质毛细血管转运时间异质性(CTH)的影响

阅读:4
作者:Eugenio Gutiérrez-Jiménez, Hugo Angleys, Peter Mondrup Rasmussen, Irene Klærke Mikkelsen, Kim Mouridsen, Leif Østergaard

Abstract

Capillary flow patterns are highly heterogeneous in the resting brain. During hyperemia, capillary transit-time heterogeneity (CTH) decreases, in proportion to blood's mean transit time (MTT) in passive, compliant microvascular networks. Previously, we found that functional activation reduces the CTH:MTT ratio, suggesting that additional homogenization takes place through active neurocapillary coupling mechanisms. Here, we examine changes in the CTH:MTT ratio during hypercapnic hyperemia in anesthetized mice (C57Bl/6NTac), expecting that homogenization is smaller than during functional hyperemia. We used an indicator-dilution technique and multiple capillary scans by two-photon microscopy to estimate CTH and MTT. During hypercapnia, MTT and CTH decreased as derived from indicator-dilution between artery and vein, as well as between arterioles and venules. The CTH:MTT ratio, however, increased. The same tendency was observed in the estimates from capillary scans. The parallel reductions of MTT and CTH are consistent with previous data. We speculate that the relative increase in CTH compared to MTT during hypercapnia represents either or both capillary constrictions and blood passage through functional thoroughfare channels. Intriguingly, hemodynamic responses to hypercapnia declined with cortical depth, opposite previous reports of hemodynamic responses to functional activation. Our findings support the role of CTH in cerebral flow-metabolism coupling during hyperemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。