SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning

SHIFT:通过深度学习实现肿瘤特征从组织学到免疫荧光的快速转换

阅读:6
作者:Erik A Burlingame, Mary McDonnell, Geoffrey F Schau, Guillaume Thibault, Christian Lanciault, Terry Morgan, Brett E Johnson, Christopher Corless, Joe W Gray, Young Hwan Chang

Abstract

Spatially-resolved molecular profiling by immunostaining tissue sections is a key feature in cancer diagnosis, subtyping, and treatment, where it complements routine histopathological evaluation by clarifying tumor phenotypes. In this work, we present a deep learning-based method called speedy histological-to-immunofluorescent translation (SHIFT) which takes histologic images of hematoxylin and eosin (H&E)-stained tissue as input, then in near-real time returns inferred virtual immunofluorescence (IF) images that estimate the underlying distribution of the tumor cell marker pan-cytokeratin (panCK). To build a dataset suitable for learning this task, we developed a serial staining protocol which allows IF and H&E images from the same tissue to be spatially registered. We show that deep learning-extracted morphological feature representations of histological images can guide representative sample selection, which improved SHIFT generalizability in a small but heterogenous set of human pancreatic cancer samples. With validation in larger cohorts, SHIFT could serve as an efficient preliminary, auxiliary, or substitute for panCK IF by delivering virtual panCK IF images for a fraction of the cost and in a fraction of the time required by traditional IF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。