Disruption of cytochrome c heme coordination is responsible for mitochondrial injury during ischemia

细胞色素 c 血红素协调的破坏是造成缺血期间线粒体损伤的原因

阅读:6
作者:Alexander V Birk, Wesley M Chao, Shaoyi Liu, Yi Soong, Hazel H Szeto

Background

It was recently suggested that electron flow into cyt c, coupled with ROS generation, oxidizes cyt c Met(80) to Met(80) sulfoxide (Met-O) in isolated hearts after ischemia-reperfusion, and converts cyt c to a peroxidase. We hypothesize that ischemia disrupts Met(80)-Fe ligation of cyt c, forming pentacoordinated heme Fe(2+), which inhibits electron transport (ET) and promotes oxygenase activity.

Conclusion

Our results show that ischemia disrupts the Met(80)-Fe ligation of cyt c resulting in the formation of a globin-like pentacoordinated heme Fe(2+) that inhibits ET, and converts cyt c into an oxygenase to cause CL peroxidation and proteolytic degradation of OPA1, resulting in cyt c release. General significance: Cyt c heme structure represents a novel target for minimizing ischemic injury. SS-20, which we show to selectively target CL and protect the Met(80)-Fe ligation, minimizes ischemic injury and promotes ATP recovery.

Methods

SS-20 (Phe-D-Arg-Phe-Lys-NH2) was used to demonstrate the role of Met(80)-Fe ligation in ischemia. Mitochondria were isolated from ischemic rat kidneys to determine sites of respiratory inhibition. Mitochondrial cyt c and cyt c Met-O were quantified by western blot, and cristae architecture was examined by electron microscopy.

Results

Biochemical and structural studies showed that SS-20 selectively targets cardiolipin (CL) and protects Met(80)-Fe ligation in cyt c. Ischemic mitochondria showed 17-fold increase in Met-O cyt c, and dramatic cristaeolysis. Loss of cyt c was associated with proteolytic degradation of OPA1. Ischemia significantly inhibited ET initiated by direct reduction of cyt c and coupled respiration. All changes were prevented by SS-20.

Significance

Cyt c heme structure represents a novel target for minimizing ischemic injury. SS-20, which we show to selectively target CL and protect the Met(80)-Fe ligation, minimizes ischemic injury and promotes ATP recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。