DNA methyltransferase inhibition reduces inflammation-induced colon tumorigenesis

DNA甲基转移酶抑制可减少炎症引起的结肠肿瘤发生

阅读:5
作者:Ashley R Maiuri, Sudha S Savant, Ram Podicheti, Douglas B Rusch, Heather M O'Hagan

Abstract

Chronic inflammation is strongly associated with an increased risk of developing colorectal cancer. DNA hypermethylation of CpG islands alters the expression of genes in cancer cells and plays an important role in carcinogenesis. Chronic inflammation is also associated with DNA methylation alterations and in a mouse model of inflammation-induced colon tumorigenesis, we previously demonstrated that inflammation-induced tumours have 203 unique regions with DNA hypermethylation compared to uninflamed epithelium. To determine if altering inflammation-induced DNA hypermethylation reduces tumorigenesis, we used the same mouse model and treated mice with the DNA methyltransferase (DNMT) inhibitor decitabine (DAC) throughout the tumorigenesis time frame. DAC treatment caused a significant reduction in colon tumorigenesis. The tumours that did form after DAC treatment had reduced inflammation-specific DNA hypermethylation and alteration of expression of associated candidate genes. When compared, inflammation-induced tumours from control (PBS-treated) mice were enriched for cell proliferation associated gene expression pathways whereas inflammation-induced tumours from DAC-treated mice were enriched for interferon gene signatures. To further understand the altered tumorigenesis, we derived tumoroids from the different tumour types. Interestingly, tumoroids derived from inflammation-induced tumours from control mice maintained many of the inflammation-induced DNA hypermethylation alterations and had higher levels of DNA hypermethylation at these regions than tumoroids from DAC-treated mice. Importantly, tumoroids derived from inflammation-induced tumours from the DAC-treated mice proliferated more slowly than those derived from the inflammation-induced tumours from control mice. These studies suggest that inhibition of inflammation-induced DNA hypermethylation may be an effective strategy to reduce inflammation-induced tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。