Celastrol assuages oxygen-glucose deprivation and reoxygenation-induced damage in human brain microvascular endothelial cells through the circDLGAP4/miR-6085/GDF11 pathway

雷公藤红素通过 circDLGAP4/miR-6085/GDF11 通路减轻人脑微血管内皮细胞氧-糖缺乏和复氧诱导的损伤

阅读:6
作者:Chunhong Liu, Jiahui Gu, Yingli Yu

Abstract

The effect of Celastrol on cerebral ischemia-reperfusion remains unknown. The study aims to explore the role of circular RNA DLGAP4 (circDLGAP4) in cerebral ischemia-reperfusion and the underlying mechanism. Ischemia-reperfusion (I/R) injury of human brain microvascular endothelial cells (HBMECs) was induced by oxygen-glucose deprivation and reoxygenation (OGD/R). Reverse transcription quantitative real-time PCR (RT-qPCR) and western blotting analysis were performed to detect the expression of circDLGAP4, microRNA-6085 (miR-6085), growth differentiation factor 11 (GDF11), B-cell lymphoma-2 (BCL2) and BCL2-associated x protein (BAX). Cell viability, proliferation, and apoptosis were analyzed by cell counting kit-8, 5-Ethynyl-2'-deoxyuridine and flow cytometry analysis. Oxidative stress was analyzed by evaluating the levels of Malondialdehyde (MDA) and Reactive Oxygen Species (ROS) and the activity of Superoxide Dismutase (SOD). The associations among circDLGAP4, miR-6085 and GDF11 were identified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. Celastrol reduced OGD/R-induced inhibition of circDLGAP4 expression in HBMECs. Celastrol treatment protected HBMECs from OGD/R-induced cell proliferation inhibition and apoptosis and oxidative stress promotion; however, circDLGAP4 depletion attenuated these effects. CircDLGAP4 acted as a sponge for miR-6085, and miR-6085 mimics restored circDLGAP4-mediated effects in OGD/R-stimulated HBMECs. In addition, GDF11 was identified as a targte of miR-6085, and participated in the regulation of miR-6085 to OGD/R-induced HBMEC damage. Further, circDLGAP4 absence inhibited GDF11 expression by interacting with miR-6085 under Celastrol treatment. Celastrol ameliorated OGD/R-induced HBMEC apoptosis and oxidative stress by circDLGAP4/miR-6085/GDF11 pathway, supporting the use of Celastrol as a therapeutic agent for cerebral infarction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。