Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts

遗传性白内障 α-晶体蛋白突变敲入小鼠模型中的自噬和 UPR

阅读:4
作者:Usha P Andley, Joshua W Goldman

Background

Knock-in mice provide useful models of congenital and age-related cataracts caused by α-crystallin mutations. R49C αA-crystallin and R120G αB-crystallin mutations are linked with hereditary cataracts. Knock-in αA-R49C+/- heterozygotes develop cataracts by 1-2months, whereas homozygote mice have cataracts at birth. The R49C mutation drastically reduces lens protein water solubility and causes cell death in knock-in mouse lenses. Mutant crystallin cannot function as a chaperone, which leads to protein aggregation and lens opacity. Protein aggregation disrupts the lens fiber cell structure and normal development and causes cell death in epithelial and fiber cells. We determined what aspects of the wild-type phenotype are age-dependently altered in the mutant lens.

Conclusions

Mutated crystallins alter lens morphology, autophagy, and stress responses. General significance: Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.

Methods

Wild-type, heterozygote (αA-R49C+/-), and homozygote (αA-R49C+/+) mouse lenses were assessed pre- and postnatally for lens morphology (electron microscopy, immunohistochemistry), and autophagy or unfolded protein response markers (immunoblotting).

Results

Morphology was altered by embryonic day 17 in R49C+/+ lenses; R49C+/- lens morphology was unaffected at this stage. Active autophagy in the lens epithelium of mutant lenses was indicated by the presence of autophagosomes using electron microscopy. Protein p62 levels, which are degraded specifically by autophagy, increased in αA-R49C mutant versus wild-type lenses, suggesting autophagy inhibition in the mutant lenses. The unfolded protein response marker XBP-1 was upregulated in adult lenses of αB-R120G+/+ mice, suggesting its role in lens opacification. Conclusions: Mutated crystallins alter lens morphology, autophagy, and stress responses. General significance: Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.

Significance

Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。